Abstract
Plant-based nanoformulation is one of the novel approaches for therapeutic benefits. This research synthesized a silver nanoparticle from the polyherbal combination of four plants/seeds (Momordica charantia, Trigonella foenum-graecum, Nigella sativa, and Ocimum sanctum) and investigated its antidiabetic effects in streptozotocin-induced Wistar albino rat model. The polyherbal extract (PH) was extracted by the Soxhlet-solvent extraction method and the resulting crude extract was undergone for silver nanoparticle synthesis. The PH extract was subjected to a four-week intervention in fructose-fed streptozotocin-induced Wistar Albino rats’ models and in vitro antioxidative tests. Experimental animals (age: 6–7 weeks, male, body weight: 200–220 g), were divided into five groups including normal control (NC), reference control (RC), diabetic control (DC), and treatment groups PH200, PH100, and PHAgNP20. After three weeks of intervention, body weight, weekly blood glucose level, oral glucose tolerance test, AST, ALT, alkaline phosphatase, total cholesterol, triglycerides, uric acid, urea, and creatinine level of PH200 were found to be significantly (P < 0.05) improved compared to the diabetic control. The same dose demonstrated better regeneration of damaged pancreatic and kidney tissues. In vitro antioxidant assay manifested promising IC50 values of 86.17 μg/mL for DPPH, 711.04 μg/mL for superoxide free radical, and 0.48 mg/mL for Iron chelating activity of the polyherbal extract. GC-MS analysis impacted the major volatile compounds of the PH. The data demonstrate that the PH and its nanoparticles could be a novel source of antidiabetic therapeutics through an advanced dose-response study in the type 2 diabetic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.