Abstract

The current study was aimed (1) to study the green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract, (2) to investigate the induction of apoptosis by biologically synthesized silver nanoparticles in gastric cancer cell line (AGS) and (3) to compare their anti-cancer potential with commercial silver nanoparticles. The specification and morphology of the phytosynthesized AgNPs were evaluated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–visible spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). The nanoparticles synthesized were of an average size of 22 nm. The cytotoxicity of biological and commercial nanoparticles was investigated in gastric cancer cells (AGS) as well as normal fibroblast cells (L–929) by MTT assay. By increasing the concentration of phytosynthesized and commercial silver nanoparticles, a decrease was observed in the cell viability. Increased apoptosis was observed in the cells treated with biological silver nanoparticles compared to untreated cells (p < .001). Based on these findings, it was inferred that biologically synthesized silver nanoparticles induced apoptosis, and showed a cytotoxic and anti-cancer effect against gastric cancer cell lines in a dose- and time-dependent manner. Biologically synthesized nanoparticles may possess higher anti-cancer properties than commercial silver nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call