Abstract

Therapeutic applications of nanoparticles (NPs) are rapidly increasing for their utility in medicine, especially cancer therapy. The present study investigated the green synthesis of silver NPs (Ag NPs) of 10 nm size using Sargassum vulgare and its preferential ability to kill cancerous human myeloblastic leukemic cells HL60 and cervical cancer cells HeLa as compared with normal peripheral blood mononuclear cells. DNA fragmentation study and annexin V marker fluorescence-activated cell sorting (FACS) analysis revealed the Ag NP-induced cell death is through apoptosis. Transmission electron micrographs have showed the endocytosis of Ag NPs into the nucleus. Ag NPs inhibited the lipid peroxidation-induced reactive oxygen species generation, thus preventing the irradiation-related carcinogenesis. This study suggested that a mechanism underlying the toxicity of Ag NPs towards cancer cells is due to DNA damage and apoptosis. The authors' findings revealed the potential utility of as-prepared Ag NPs in the treatment of cancer as prophylactic agent with antioxidant property and chemotherapeutic agent for their selective toxicity to cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call