Abstract

This review explores recent advancements in the green synthesis of silver nanoparticles (AgNP), focusing on plant-based methods, critical synthesis factors, and biomedical applications. Plant extracts, rich in reducing agents like phenols, flavonoids, and terpenoids, facilitate the eco-friendly conversion of silver ions into AgNP. Key parameters such as pH, temperature, reaction time, and silver precursor concentration are examined for their impact on nanoparticle size, stability, and yield. The biosynthesized AgNP demonstrate broad-spectrum antimicrobial activity, primarily through mechanisms like bacterial membrane disruption and oxidative stress. Emerging applications in anticancer treatments, antioxidant therapies, and wound healing are also discussed. The advantages of green synthesis over conventional chemical methods are highlighted, alongside reproducibility, scalability, and cytotoxicity challenges. Future directions include standardizing synthesis protocols, developing large-scale production strategies, and investigating AgNP toxicity mechanisms further. Plant-mediated green synthesis represents a promising and sustainable approach for generating AgNP with significant biomedical potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.