Abstract

Gold nanoparticles (AuNPs) have attracted extensive attention in the past few years due to their unique properties and great potential application in catalysis. However, the application of AuNPs remains a significant challenge due to the lack of high efficiency and stability caused by aggregation. Immobilization of AuNPs on appropriate support shows promising results in avoiding aggregation and improving catalytic activity. In this work, reduced graphene oxide/chitosan/gold nanoparticles (rGO/CHS/AuNPs) composites were prepared using chitosan with different molecular weights (MW) as a reducing agent and stabilizer, and characterized by FT-IR, XRD, XPS, SEM, FESEM, EDS, TEM, HRTEM, and TGA. The preparation conditions of rGO/CHS/AuNPs composites, including chitosan MW, CHS/GO mass ratio, reaction temperature and time, and HAuCl4 concentration were investigated in detail. The results indicated that reduction activity of chitosan for GO increased with the decrease of chitosan MW. The C/O ratio of rGO reduced by low molecular weight chitosan (LMWC) with viscosity-average molecular weight (Mv) of 21 kDa was 6.34. Small spherical AuNPs were uniformly immobilized on the rGO surface. The particle size of AuNPs increased from 9.29 to 13.03 nm as chitosan MW decreased from 465 to 21 kDa. The rGO/CHS/AuNPs showed good catalytic activity for the reduction of 4-NP in the presence of NaBH4. The catalytic activity of rGO/CHS/AuNPs was closely related to chitosan MW. rGO/CHS/AuNPs synthesized by LMWC with Mv of 21 kDa showed the highest kinetic rate constant of 0.2067 min−1. The results of this experimental study could be useful in the development of effective catalysts for the reduction of aromatic nitro compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.