Abstract
We report the green synthesis of trimethyl chitosan-functionalized poly(2-hydroxyethyl methacrylate) (PHEMA-TMC) nanogels via surfactant-free emulsion photopolymerization. TMC, a quaternized derivative of chitosan, was synthesized through methylation of chitosan, resulting in quaternary and tertiary amine groups as the main substitution products. TMC tertiary amine moiety and riboflavin (RF) acted as a redox photo-initiating system to generate free radicals for the polymerization under light irradiation. The effects of polymerization parameters such as irradiation time, concentrations of TMC and RF were investigated using MBA as crosslinker. Under the optimal condition of 1 % TMC, 4 % HEMA, 0.8 μM RF, 5 % MBA, and 4 h of polymerization time, the cationic PHEMA-TMC nanogel was synthesized with 76 % monomer conversion and an average diameter of about 106 nm. Moreover, the disulfide-crosslinked PHEMA-TMC nanogel was also synthesized using the disulfide dimethacrylate crosslinker, which exhibited a redox-induced degradation and release of encapsulated melatonin, potentially useful as a redox-responsive drug delivery carrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.