Abstract

In the present study, nickel nanoparticles were green-synthesized using the aqueous extract of Fumaria officinalis. The synthesized NiNPs@F. officinalis were characterized by analytical techniques including EDX, FE-SEM, XRD, UV-Vis., and FT-IR. The antioxidant and anti-ovarian cancer activity of NiNPs@F. officinalis was evaluated. The nanoparticles were formed in a spherical shape in the range of 16.85 to 49.04 nm for the particle size. In the antioxidant test, the IC50 of F. officinalis, NiNPs@F. officinalis, and BHT against DPPH free radicals were 253, 145, and 107 µg/mL, respectively. In the cellular and molecular part of the recent study, the treated cells with NiNPs@F. officinalis were assessed by MTT assay for 48 h about the cytotoxicity and anti-human ovarian cancer properties on normal (HUVEC) and ovarian cancer cell lines i.e. PA-1, Caov-3, SW-626, and SK-OV-3. The viability of malignant ovarian cell line reduced dose-dependently in the presence of NiNPs@F. officinalis. The IC50 of NiNPs@F. officinalis were 375, 225, 246, and 279 µg/mL against PA-1, Caov-3, SW-626, and SK-OV-3 cell lines, respectively. After the clinical study, nickel nanoparticles containing F. officinalis leaf aqueous extract may be used to formulate a new chemotherapeutic drug or supplement to treat several types of human ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call