Abstract

Magnetic binary heterojunctions are a kind of promising photocatalysts due to their high catalytic activity and easy magnetic separation; however, their synthesis may involve high costs or secondary environmental impacts. In this work, the magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn1-xMnxS (MZFO@Zn1-xMnxS, x = 0.00–0.07) photocatalysts are synthesized from spent batteries via a green biocheaching and egg white-assisted hydrothermal method. The as-synthesized photocatalysts have been comprehensively characterized in phase, morphology, texture, optics, photoelectrochemistry and photocatalytic activity. Characterization results indicate that the desired core-shell structure MZFO@Zn1-xMnxS composites are successfully synthesized, theirs absorption intensity in the visible light region is greatly enhanced compared to Zn1-xMnxS. In addition, doped Mn2+ in ZnS host lattice and the staggered bandgap alignment of MZFO and Zn1-xMnxS greatly enhances electron transfer and charge separation in the binary heterojunction system. The optimized MZFO@Zn0.95Mn0.05S shows the highest photodegradation performance toward phenol under the visible light irradiation, with a complete degradation of 25 mg L−1 of phenol within 120 min, and its reactive kinetic constants is about 5.2 and 13.3 times higher than that of pure Zn0.95Mn0.05S and MZFO, respectively. Furthermore, the mechanism and pathways for the degradation of phenol are proposed. In addition, MZFO@Zn0.95Mn0.05S also exhibits a good reusability and high magnetic separation properties after 5 successive cycles. This new material has the advantages of low costs, simple reuse and great potential in application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.