Abstract

Graphene-based nanomaterials have been proved to be robust sorbents for efficient removal of environmental contaminants including arsenic (As). Biobased graphene oxide (bGO-P) derived from sugarcane bagasse via pyrolysis, GO-C via chemical exfoliation, and magnetite nanoparticles (FeNPs) via green approach using Azadirachta indica leaf extract were synthesized and characterized by Ultraviolet-Visible Spectrophotometer (UV-vis.), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), mean particle size and Scanning electron microscopy (SEM) along with Energy dispersive spectroscopy (EDX) analysis. Compared to cellulose and hemicellulose, the lignin fraction was less in the precursor material. The GOC, bGO-P and FeNPs displayed maximum absorption at 230, 236, and 374 nm, respectively. FTIR spectrum showed different functional groups (C-OH, C-O-C, COOH and O-H) modifying the surfaces of synthesized materials. Graphene based nanomaterials showed clustered dense flakes of GO-C and thin transparent flakes of bGO-P. Elemental composition by EDX analysis of GO-C (71.26% C and 27.36% O), bGO-P (74.54% C and 24.61% O) and FeNPs (55.61% Fe, 4.1% C and 35.72% O) confirmed the presence of carbon, oxygen, and iron in synthesized nanomaterials. Sorption study was conducted with soil amended with different doses of synthesized nanomaterials (10, 50 and 250 mg) and exposed to 100, 300 and 500 ppm of As. Arsenic concentrations were estimated by colorimetry and atomic absorption spectroscopy (AAS). GO-C, bGO-P, and FeNPs showed substantial As removal efficiency i.e., 81 to 99.3%, 65 to 98.8% and 73.1–89.9%, respectively. Green synthesis of bGO-P and magnetite nanoparticles removed substantial amounts of As compared to GO-C and can be effectively deployed for As removal or immobilization. Higher and medium sorbent doses (250 and 50 mg) exhibited greater As removal and data was best fitted for Freundlich isotherm evidencing favorable sorption. Nevertheless, at low sorbent doses, data was best fitted for both models. Newly synthesized nanomaterials emerged as promising materials for As removal strategy for soil nano-remediation and can be effectively deployed in As contaminated soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.