Abstract
The use of vegetal species for gold nanoparticles (AuNPs) biosynthesis can constitute an alternative to replacing the extensive use of several hazardous chemicals commonly used during NPs synthesis and, therefore, can reduce biological impacts induced by the release of these products into the natural environment. However, the “green nanoparticles” and/or “eco-friendly nanoparticles” label does not ensure that biosynthesized NPs are harmless to non-target organisms. Thus, we aimed to synthesize AuNPs from seaweed Gracilaria crassa aqueous extract through an eco-friendly, fast, one-pot synthetic route. The formation of spherical, stable, polycrystalline NPs with a diameter of 32.0 nm ± 4.0 nm (mean ±SEM) was demonstrated by UV–vis spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy, energy-dispersive X-ray and X-ray diffraction measurement, and Fourier-transform infrared spectroscopy analysis. In addition, different phytocomponents were identified in the biosynthesized AuNPs, using Gas Chromatography-Mass Spectrometry (GC-MS). However, both G. crassa aqueous extract and the biosynthesized AuNPs showed high ecotoxicity in Anopheles stephensi larvae exposed to different concentrations. Therefore, our study supports the potential of seaweed G. crassa as a raw material source for AuNPs biosynthesis while also shedding light on its ecotoxicological potential, which necessitates consideration of its risk to aquatic biota.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.