Abstract

Gold nanoparticles (AuNPs) have garnered significant interest in the field of biomaterials and biomedical engineering due to their wide-ranging applications, excellent biocompatibility, low toxicity, and customizable stability. This study focuses on synthesizing AuNPs through an environmentally friendly approach, specifically by utilizing the aqueous leaf extract of Allium tuberosum as both a reducing and capping agent. The synthesized AuNPs were characterized using UV-Vis Spectroscopy, revealing an absorption peak at 548 nm within the surface plasmon resonance (SPR) of AuNPs. Morphological analysis conducted via SEM showed a mixture of rod-shaped and spherical-shaped AuNPs, with dimensions of 41.0 nm (width) and 181.6 nm (length) confirmed through DLS measurements. EDX analysis confirmed the high abundance of gold in the synthesized AuNPs. Furthermore, a zeta potential value of -26.2 mV indicates that the AuNPs have decent stability. Phytochemical analyses and FT-IR results implicated that the Saponin present in the Allium tuberosum leaf extract played a crucial role in reducing metal ions and stabilizing the AuNPs. The potential of Allium tuberosum leaf extract for synthesizing diverse metal nanoparticles highlights its promise for biomaterials and biomedical engineering. The synthesized AuNPs show versatility for applications like targeted drug delivery, non-invasive imaging, and emerging biomedical uses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call