Abstract

The increasing requirement and consumption of coal has resulted in a large accumulation of coal gangue. The reuse and recycling of coal gangue have become a high priority for sustainable development. A sustainable and efficient ceramsite adsorbent was prepared for copper ions adsorption by using coal gangue, coal fly ash, and copper slag as the main materials. The appropriate performance of the ceramsite could be obtained at a mixture of coal gangue, coal fly ash, and copper slag at a weight ratio of 3:4:1. The optimal sintering temperature and time were 1050 °C and 20 min, respectively. The main crystalline phases of ceramsite were quartz, mullite, and anorthite. Many micropores are connecting the interior on the surface of ceramsite under scanning electron microscope. The maximum copper ions adsorption capacity reached up to 20.6 mg/g at 303 K when pH and time were 5 and 1440 min, respectively. The adsorption kinetics and isotherm could be described by the pseudo-second-order model and Freundlich model, respectively. The adsorption mechanisms of Cu2+ with ceramsite were attributed to Cu(OH)2 precipitation formed on the alkaline surface of ceramsite and complexation reactions occurred between the O-containing groups (including C–O, Fe–O, and Si–O) from ceramsite and Cu2+. The prepared ceramsite may be also applied to other heavy metal wastewater treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call