Abstract

ABSTRACTWe herein report the synthesis of highly-fluorescent CdSe/ZnS core-shell quantum dots (QDs) nanophosphors via a simple, non-phosphine and one pot synthetic method in the absence of an inert atmosphere. The as-prepared nanocrystallites were characterized by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) and photoluminescence spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The obtained CdSe/ZnS QDs were of high quality with sharp absorption peaks, bright luminescence, narrow emission width and high PL quantum yield (up to 74 %) without any size sorting. The structural analysis showed that the as-synthesised QDs are small and spherical in shape with narrow size distributions while the presence of the lattice fringe in the HRTEM image confirmed the crystallinity of the material. The dispersion of the obtained core-shell QDs in PMMA matrix resulted in the fabrication of highly fluorescent PMMA- CdSe/ZnS core shell QDs polymer nanocomposite film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.