Abstract

In this study, silver nanoparticle was green synthesized using the leaf extract of Solanum nigrum (Sn-AgNPs) and bio-physically characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HR-TEM), Zeta potential analysis and Energy dispersive X-ray (EDX) analysis. The ecotoxicity of silver nanoparticle (Sn-AgNPs) were tested against both invertebrate (Ceriodaphnia cornuta and Paramecium sp.) and vertebrate aquatic animal models (Guppy fish, Poecilia reticulata) in comparison with bare silver nitrate. Sn-AgNPs were observed to be less toxic than ionic silver (silver nitrate). The ecotoxicity levels of Sn-AgNPs were found to be varied between tested organisms. Sn-AgNPs caused 100% mortality of freshwater crustacean, C. cornuta at 50 µg mL−1. At concentration below 50 µg mL−1 (10–30 µg mL−1), abnormality in the swimming behavior of C. cornuta was noticed. The ingestion and accumulation of Sn-AgNPs in the intestine of C. cornuta neonates were visualized under light and confocal laser scanning microscopic images. The ecotoxicity of Sn-AgNPs to the freshwater protozoan ciliate, Paramecium sp. showed that 30 µg mL−1 were lethal and produced 100% mortality at the same concentration. The study concludes that Sn-AgNPs was less toxic to both invertebrate and vertebrate models compared to ionic silver nitrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call