Abstract

Biosynthesis of nanoparticles refers to the production or synthesis of nanoparticles using organisms, such as bacteria, fungi, plants or their byproducts. This approach offers several advantages over conventional chemical methods, including eco-friendliness, cost-effectiveness, and potential for large-scale production. The silver nanoparticles (AgNPs) synthesized using aqueous Camellia sinensis L. (white tea leaf) extracts as reducing and stabilizing agents were reported and evaluated for antibiofilm activity against test microorganisms (Acinetobacter baumanii ATCC 19606 NRRLB 3704, Pseudomonas aeruginosa ATCC 27853 (Gram –), and Bacillus subtilis ATCC 6633, Staphylococcus haemolyticus ATCC 43252 (Gram +), and Candida albicans ATCC 10231) in the study. The synthesized AgNPs were observed and characterized using Uv-Vis spectroscopic analysis, scanning electron and transmission electron microscopy energy-dispersive spectra and Fourier transform infrared spectroscopy. The synthesized AgNP was also screened for antibiofilm activity against test microorganisms. Our results show that the synthesized AgNPs have the potential to be used for antibiofilm materials and different biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call