Abstract

Urban green spaces (UGS) play a crucial role in the urban environmental system by aiding in mitigating the urban heat island effect, promoting sustainable urban development, and ensuring the physical and mental well-being of residents. The utilization of remote sensing imagery enables the real-time surveying and mapping of UGS. By analyzing the spatial distribution and spectral information of a UGS, it can be found that the UGS constitutes a kind of low-rank feature. Thus, the accuracy of the UGS segmentation model is not heavily dependent on the depth of neural networks. On the contrary, emphasizing the preservation of more surface texture features and color information contributes significantly to enhancing the model’s segmentation accuracy. In this paper, we proposed a UGS segmentation model, which was specifically designed according to the unique characteristics of a UGS, named the Green Space Reverse Pixel Shuffle Network (GSRPnet). GSRPnet is a straightforward but effective model, which uses an improved RPS-ResNet as the feature extraction backbone network to enhance its ability to extract UGS features. Experiments conducted on GaoFen-2 remote sensing imagery and the Wuhan Dense Labeling Dataset (WHDLD) demonstrate that, in comparison with other methods, GSRPnet achieves superior results in terms of precision, F1-score, intersection over union, and overall accuracy. It demonstrates smoother edge performance in UGS border regions and excels at identifying discrete small-scale UGS. Meanwhile, the ablation experiments validated the correctness of the hypotheses and methods we proposed in this paper. Additionally, GSRPnet’s parameters are merely 17.999 M, and this effectively demonstrates that the improvement in accuracy of GSRPnet is not only determined by an increase in model parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call