Abstract
Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.