Abstract

Abstract Vehicle electrification is expanding worldwide and has the potential to reduce greenhouse gas emissions (GHGs) from the transportation sector. Batteries are a key component of energy storage systems for electric vehicles (EVs), and their integration into EVs can lead to a wide range of possible environmental outcomes. These outcomes depend on factors such as powertrain type, electricity source, charging patterns, and end-of-life management. Given the complexities of battery systems, a framework is needed to systematically evaluate environmental impacts across battery system life cycle stages, from material extraction and production to use in the EV, through the battery’s end-of-life. We have developed a set of ten principles to provide practical guidance, metrics, and methods to accelerate environmental improvement of mobile battery applications and facilitate constructive dialogue among designers, suppliers, original equipment manufacturers, and end-of-life managers. The goal of these principles, which should be implemented as a set, is to enhance stewardship and sustainable life cycle management by guiding design, material choice, deployment (including operation and maintenance), and infrastructure planning of battery systems in mobile applications. These principles are applicable to emerging battery technologies (e.g., lithium-ion), and can also enhance the stewardship of existing (e.g., lead-acid) batteries. Case study examples are used to demonstrate the implementation of the principles and highlight the trade-offs between them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call