Abstract

A green and facile hydrothermal synthesis approach is proposed for the preparation of nitrogen-doped carbon quantum dots (N-CQDs) with wolfberry. These N-CQDs were developed as a highly sensitive fluorescent ‘on-off-on’ switch sensor for the sensing of Fe3+ and l-ascorbic acid (AA). The N-CQDs displayed superior fluorescence characteristics of CQDs with a quantum yield up to 22%. The N-CQDs were demonstrated to selectively react with Fe3+, leading to fluorescence quenching effect, which was successfully used for the detection of Fe3+ with a limit of detection at 3 μmoL•L−1. The addition of AA is supposed to repair the surface defects, and result in the fluorescence recovery. Based on this effect, the strategy of ‘on-off-on’ detection of AA was established with a limit of detection at 1.8 μmoL•L−1. Furthermore, the practical application of the detection of Fe3+ lake water and AA in medical tablet was demonstrated, promising an effective and efficient ‘on-off-on’ nanosensor with low-cost, green synthesis for Fe3+ and AA detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.