Abstract

Purpose This work aimed to fabricate alginate based in-situ gelling matrix of vildagliptin improved by calcium and carboxy methyl cellulose (CMC) for appropriate adjustment of the onset and duration of action. This easy-to-swallow thickened liquid preparation aimed to improve compliance for dysphagic or elderly diabetic patients. Methods Vildagliptin dispersions containing alginate were fabricated in the presence or absence of calcium chloride to assess the effect of calcium ion, then a matrix containing 1.5% w/v of sodium alginate with calcium was further examined after the addition of CMC with different concentrations ranging from 0.1% to 0.3%. The viscosity, gelling forming property, Differential scanning calorimetry, and in-vitro drug release were assessed before monitoring the hypoglycemic effect of the selected formulation. Results In-situ gel matrixes were fabricated at gastric pH with and without calcium ions. The best formula concerning viscosity and the gel-forming property was achieved with higher CMC concentrations, which in turn decreased the rate of vildagliptin release in stimulated gastric pH. In-vivo results confirmed the extended hypoglycemic effect of the vildagliptin in-situ gelling matrix compared to the vildagliptin aqueous solution. Conclusion This study represents a green polymeric-based in-situ gel as a liquid oral retarded release preparation intended for reducing dose frequency, easier administration of vildagliptin, and improving compliance in geriatric and dysphagic diabetic patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call