Abstract

The advantage of using plants in nanoparticles synthesis is that they are easily available, safe to handle and possess a broad variability of metabolites such as antioxidants, nucleotides and vitamins. The aim of this study was to investigate the effects of Green and Zimbro tea and also Green coconut water as a reducing and stabilizer agent in gold nanoparticle synthesis. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Dynamic light scattering (DLS) and Transmission electron microscopy (TEM) analysis. Their physical stability was determined using a UV-Vis spectrophotometer over several days during storage at room temperature. We observed that green chemical process to obtain gold nanoparticles did not require any external chemicals reagent for stabilization of nanoparticulate. Absorption measurements indicated that the plasmon resonance wavelength appears around 530 nm. X-ray diffracto-grams of gold nanoparticles evidenced the presence of Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles and some agglomerates. Differences in size and shape of the nanoparticles were observed. Zeta potential of AuNPs synthetized in presence of Green tea was -33 mV indicating stability of the synthesized nanoparticles.

Highlights

  • Nanotechnology is one of the fastest growing areas of Science and technology

  • All chemicals and plant extracts precursors used in the synthesis of gold nanoparticles (AuNPs) were purchased from suppliers: HAuCl4∙3H2O (Fluka), Camellia sinensis, J. communis and Green coconut water were obtained from a local market

  • Gold nanoparticles produced by Green synthesis did not require any external chemicals agents for the reduction and stabilization of the nanoparticle

Read more

Summary

Introduction

Nanotechnology is one of the fastest growing areas of Science and technology. The synthesis of metal nanoparticles is an active area of research in the field of nanotechnology with an exponential progress in biomedical applications including imaging, diagnostics, drug delivery and therapeutics using metal nanoparticles [1] [2].Several chemical and physical methods have been used for synthesis of nanoparticles. Nanotechnology is one of the fastest growing areas of Science and technology. The synthesis of metal nanoparticles is an active area of research in the field of nanotechnology with an exponential progress in biomedical applications including imaging, diagnostics, drug delivery and therapeutics using metal nanoparticles [1] [2]. Several chemical and physical methods have been used for synthesis of nanoparticles. There is an essential need to develop environment friendly methods for synthesis of metal nanoparticles. The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Varieties of green nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by different methods and their applications in many innovative technological areas have been explored [3]-[6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call