Abstract

Fuel cell efficiency can be improved by using progressive electrodes and electrolytes. Green nanomaterials and green technologies have been explored for the manufacturing of high-performance electrode and electrolyte materials for fuel cells. Platinum-based electrodes have been replaced with green materials and nanocomposites using green fabrication approaches to attain environmentally friendly fuel cells. In this regard, ecological and sustainable electrode- and electrolyte-based membrane electrode assemblies have also been designed. Moreover, green nanocomposites have been applied to form the fuel cell electrolyte membranes. Among fuel cells, microbial fuel cells have gained research attention for the incorporation of green and sustainable materials. Hence, this review essentially focuses on the potential of green nanocomposites as fuel cell electrode and electrolyte materials and application of green synthesis techniques to attain these materials. The design of and interactions with nanocomposites have led to synergistic effects on the morphology, impedance, resistance, power density, current density, electrochemical features, proton conductivity, and overall efficiency. Moreover, we deliberate the future significance and challenges of the application of green nanocomposites in electrodes and electrolytes to attain efficient fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call