Abstract

In this work, for the first time, magnetic-phthalated maltodextrin nanosponges (M-PAMDNSs) were synthetized and introduced as efficient and green sorbents. The integration of phthaloyl groups as hydrophobic moieties into networks of maltodextrin nanosponges provided good enrichment for hypothalamic-related peptides (HRPs). The synthesized materials were characterized by 1H nuclear magnetic resonance spectroscopy, water contact angle, attenuated total reflection-Fourier transform infrared spectroscopy, dynamic light scattering, zeta potential, pH point of zero charge, acid-base titration, field-emission scanning electron microscopy, Brunauer-Emmett-Teller, and vibrating sample magnetometer. Under the optimized conditions (sorbent amount: 5.0 mg, desorption solvent volume and type: 300 µL of methanol: H2O: trifluoroacetic acid, extraction time: 15 min, and desorption time: 10 min), the developed magnetic solid-phase extraction (MSPE) method in combination with HPLC-UV was used as a novel and sensitive analytical method for the determination of HRPs in plasma samples. The proposed MSPE-HPLC-UV method provided good linearity (1.5–500 ng mL−1 R2 ≥ 0.9988), low limits of detection (0.1–0.2 ng mL−1) and quantification (0.4–0.8 ng mL−1), desirable precision (RSD ≤ 8.8%, n ₌ 5), satisfactory enrichment factor (EFs ≥ 66.0), and well relative recoveries (92.8–108.8%). Overall, the established method effectively expanded the analytical potential of MSPE approach for the quantification of HRPs in biological samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call