Abstract

With recent advances in nanotechnology, debranched starch nanoparticle (DBS-NP) materials have attracted considerable interest from the fields of functional food, biomedicine, and material science, thanks to their small size, biodegradability, biocompatibility, sustainability, and non-hazardous effects on health and the environment. In this study, DBS-NP was fabricated using an eco-friendly method involving ultrasonication combined with recrystallization. The effects of ultrasonication and recrystallization times on the morphology, particle size, and crystal structure of the DBS-NPs were systematically investigated. Compared with the DBS-NPs prepared using ultrasonication treatment only, the DBS-NPs formed using ultrasonication combined with recrystallization were uniform in size and well distributed in aqueous solution. Moreover, the maximum encapsulation efficiency and loading capacity of the epigallocatechin gallate (EGCG) in the DBS-NPs with ultrasonication treatment reached 88.35% and 22.75%, respectively. The particle sizes of the EGCG@DBS-NP were more stable at a neutral pH (7.4) than at an acidic pH (2.1). The EGCG in the EGCG@DBS-NP displayed excellent radical scavenging activity and antibacterial effects, and cell assays demonstrated that the EGCG@DBS-NP was non-toxic and highly biocompatible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.