Abstract
Biomass-derived molecules can provide a basis for sustainable drug discovery. However, their full exploration is hampered by the dominance of millions of old-fashioned screening compounds in classical high-throughput screening (HTS) libraries frequently utilized. We propose a fragment-based drug discovery (FBDD) approach as an efficient method to navigate biomass-derived drug space. Here, we perform a proof-of-concept study with dihydrolevoglucosenone (CyreneTM), a pyrolysis product of cellulose. Diverse synthetic routes afforded a 100-membered fragment library with a diversity in functional groups appended. The library overall performs well in terms of novelty, physicochemical properties, aqueous solubility, stability, and three-dimensionality. Our study suggests that Cyrene-based fragments are a valuable green addition to the drug discovery toolbox. Our findings can help in paving the way for new hit drug candidates that are based on renewable resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.