Abstract

Green chemistry, also known as sustainable or environmentally benign chemistry, has emerged as a critical paradigm shift in the field of chemistry, with the primary objective of designing and implementing chemical processes and products that minimize environmental impacts. This review provides a comprehensive overview of the key principles, developments, and impacts of green chemistry. Review begins by discussing the fundamental principles of green chemistry, including the 12 principles established by Anastas and Warner, which serve as a foundational framework for sustainable chemical design. These principles emphasize the importance of waste prevention, the use of renewable feedstocks, and the reduction of toxicity in chemical processes. Subsequently, the review explores the significant developments and innovations in green chemistry, such as the design of more sustainable solvents, catalytic processes, and the application of nanotechnology. Green chemistry has not only led to the development of environmentally friendly alternatives but has also reduced the environmental footprint of established chemical processes. The environmental and societal impacts of green chemistry are discussed, highlighting how the adoption of sustainable practices has led to reduced energy consumption, decreased waste generation, and the mitigation of harmful emissions. The review also emphasizes the role of green chemistry in addressing global challenges, such as climate change and resource depletion. The review concludes by underscoring the importance of continued research and education in green chemistry to further promote its widespread adoption. It highlights the potential for green chemistry to contribute significantly to a sustainable and environmentally conscious future, where chemistry plays a pivotal role in addressing the complex challenges of our time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call