Abstract

Green and sustainable cellulose-based composites containing poly(ε-caprolactone) (PCL) with temperature-induced shape memory properties and conductivity performance are presented. The composites are fabricated by in situ polymerization of ε-caprolactone (ε-CL) monomer in three-dimensional porous cellulose gels, and then silver-porous cellulose gel/poly(ε-caprolactone) (Ag-Cell/PCL) composites are fabricated by depositing Ag onto the surface of porous cellulose gel/poly(ε-caprolactone) (Cell/PCL) composites. The addition of PCL not only improves the mechanical properties of the Cell/PCL composites but also endows them with excellent shape memory properties. The Cell/PCL composites exhibit a high shape-fixing rate (98.9%) and can recover to their original shape within 8 s without external force. In addition, the Ag-Cell/PCL composites show superior and stable conductivity under different bending angles. Finally, a temperature warning sensor with fast performance is successfully designed using Ag-Cell/PCL composites. This work provides a means to develop temperature warning systems based on shape memory polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.