Abstract
The aim of this work was the green synthesis of copper nanoparticles (Cu-NPs) using aqueous extracts of (i) bilberry (Vaccinium myrtillus L.) waste residues from the production of fruit juices and (ii) non-edible “false bilberry” fruits (Vaccinium uliginosum L. subsp. gaultherioides). Different cupric salts (CuCl2, Cu(CH3COO)2 and Cu(NO3)2) were used for the synthesis. The formation of stable nanoparticles (CuNPs) was assessed by transmission electron microscopy and the oxidation state of copper in these aggregates was followed by X-ray photoelectron spectroscopy. The polyphenol composition of the extracts was characterized, before and after the synthesis, using spectrophotometric methods (i.e. total soluble polyphenols and total monomeric anthocyanins) and high-performance liquid chromatography coupled with tandem mass spectrometry (i.e. individual anthocyanins). Polyphenol concentration in the extracts was found to decrease after the synthesis, indicating their active participation to the processes, which led to the formation of Cu-NPs. The antimicrobial activity of Cu-NPs, berry extracts, and cupric ion solutions were analysed by broth microdilution and time-kill assays, on prokaryotic and eukaryotic models. The antimicrobial activity of Cu-NPs, especially those derived from bilberry waste residues, appeared to be higher for both Gram-negative and Gram-positive bacteria, and for fungi, compared to the ones of its single components (cupric salts and berry extracts). Therefore, Cu-NPs from the green synthesis here proposed can be considered as a cost-effective sanitization tool with a wide spectrum of action.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have