Abstract

The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G. We consider two optimization problems of adding k new edges to G such that the resulting graph has minimal total effective resistance (i.e., is most robust)—one where the new edges can be anywhere in the graph and one where the new edges need to be incident to a specified focus node. The total effective resistance and effective resistances between nodes can be computed using the pseudoinverse of the graph Laplacian. The pseudoinverse may be computed explicitly via pseudoinversion, yet this takes cubic time in practice and quadratic space. We instead exploit combinatorial and algebraic connections to speed up gain computations in an established generic greedy heuristic. Moreover, we leverage existing randomized techniques to boost the performance of our approaches by introducing a sub-sampling step. Our different graph- and matrix-based approaches are indeed significantly faster than the state-of-the-art greedy algorithm, while their quality remains reasonably high and is often quite close. Our experiments show that we can now process larger graphs for which the application of the state-of-the-art greedy approach was impractical before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.