Abstract

The evolution of an advancing fluid front formed by a gravity-driven thin film flowing down a planar substrate is considered, with particular reference to the presence of Marangoni stresses and/or surface topography. The system is modelled using lubrication theory and solved via an efficient, adaptive multigrid method that incorporates automatic, error-controlled grid refinement/derefinement and time stepping. The detailed three dimensional numerical results obtained reveal that, for the problems investigated, while both of the above features affect the merger of rivulets by either delaying or promoting the same, topography influences the direction of growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.