Abstract

Using high-precision microbarograph data and radar data to analyze the gravity fluctuation characteristics of four convective processes of different intensities that occurred in the Beijing–Tianjin–Hebei region in June 2018, the results show that convective cases are accompanied by gravity fluctuations of different time scales and can be separated from the background field through the wavelet transform. The stronger the convective process, the larger the fluctuation amplitude. As the convection gradually approaches the station, the fluctuation frequency broadens, and smaller period fluctuations are excited. Through Fourier analysis, the longer period of fluctuation is concentrated at about 190 min, and the power spectrum of the short-period fluctuation is weak, with a peak frequency of about 2.04 × 10−4 Hz. The results obtained by wavelet transform are similar to them, but they reflect the characteristics of fluctuation evolution over time: (1) convection-related gravity wave periods are mainly concentrated in three bands: 15–40 min, 40–120 min, and 120–250 min; (2) there may be precursor activity before the occurrence of the convective flow, and the long-period fluctuation occurs about 1–4 h ahead of time; (3) there is a short-period fluctuation in the process of convective system development, and the period range is mainly concentrated at about 40–120 min; strong convective clouds may inspire shorter-period fluctuations. The geometrical relationship between the microbarograph stations shows that the short-period fluctuations of the four convective cases propagate at a speed of 14–37 m/s, and the azimuthal angle is consistent with the convective orientation, which indicates that there is a close relationship between gravity waves and convection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call