Abstract

Abstract Intensive radiosonde observations were performed at Syowa Station (69.0°S, 39.6°E) over about 10 days in each of March, June, October, and December 2002 to examine inertia–gravity wave characteristics in the Antarctic lower stratosphere. Based on the 3-hourly observation data, two-dimensional (i.e., vertical wavenumber versus frequency) spectra of wind fluctuations were examined, utilizing a double Fourier transform method. Clear signals of gravity waves whose phases propagate upward, suggesting downward energy propagation, are detected in June and October when the polar night jet (PNJ) was present. On the other hand, downward phase propagation (i.e., upward energy propagation) components are dominant in all months. There is a spectral peak around the inertial frequency in a wide range of vertical wavenumbers in December when the background wind was weak, whereas large spectral densities are distributed over lower-frequency regions in June and October. These spectral characteristics are consistent with the results obtained using a gravity wave–resolving global circulation model (GCM) by Sato et al. Dynamical characteristics are examined separately for upward- and downward-propagating gravity waves in June, using a hodograph analysis method. As a result, it is found that upward- and downward-propagating wave packets observed simultaneously in the same height regions have similar horizontal wavelengths and phase velocities. This fact suggests that these gravity waves are generated from the same source with a similar mechanism. When the wave packets were observed, both the local Rossby number and the residual in the nonlinear balance equation estimated using NCEP–NCAR reanalysis data are large around the PNJ situated slightly to the lower latitudes of Syowa Station. Therefore, it is likely that the observed inertia–gravity waves are generated by a spontaneous adjustment around the geostrophically unbalanced PNJ and propagate toward Syowa Station. The possibility of spontaneous gravity wave generation around the PNJ is confirmed by comparison with the GCM simulation by Sato et al.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call