Abstract

The gravity-driven flow of a liquid film down an inclined wall with three-dimensional doubly periodic corrugations is investigated in the limit of vanishing Reynolds number. The film surface may exhibit constant or variable surface tension due to an insoluble surfactant. A perturbation analysis for small-amplitude corrugations is performed, wherein the wall geometry is expressed as a Fourier series consisting of a linear superposition of two-dimensional oblique waves defined by two base vectors. Each of the constituent perturbation flows over the individual oblique waves is further decomposed into a two-dimensional flow transverse to the oblique waves and a unidirectional flow parallel to the waves. Both the transverse and the parallel flow are calculated by carrying out an analysis in oblique coordinates, similar to that conducted for two-dimensional flow. The particular cases of flow down a wall with oblique two-dimensional, orthogonal three-dimensional, and hexagonal three-dimensional corrugations are considered. The results illustrate the surface velocity field and the distribution of the surfactant. The three-dimensional wall geometry is found to reduce the surface deformation with respect to its two-dimensional counterpart by increasing the effective wave numbers and decreasing the effective capillary number encapsulating the effect of surface tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call