Abstract

Three-dimensional (3D)—steady-developing-laminar-isothermal—and gravity-driven thin liquid film flow adjacent to an inclined plane is examined and the effects of film flow rate, surface tension, and surface inclination angle on the film thickness and film width are presented. The film flow was numerically simulated using the volume of fluid model and experimental verification was conducted by measuring film thickness and width using a laser focus displacement instrument. The steady film flow that is considered in this study does not have a leading contact line, however, it has two steady side contact lines with the substrate surface at the outer edge of its width. Results reveal that the film width decreases and the average film thickness increases as the film flows down the inclined plane. The film thickness and width decrease but its streamwise velocity increases as surface inclination angle (as measured from the horizontal plane) increases. A higher film flow rate is associated with a higher film thickness, a higher film width, and a higher average film velocity. Films with higher surface tension are associated with a smaller width and a higher average thickness. A ripple develops near the side contact line, i.e., the spanwise distribution of the film thickness exhibits peaks at the outer edges of the film width and the height of this ripple increases as the surface tension or the film flow rate increases. The width of the film decreases at a faster rate along the streamwise direction if liquid film has higher surface tension. Measurements of the film thickness and the film width compare favorably with the numerically simulated results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.