Abstract
AbstractWe built the first dense gravity network including 107 stations around the Tsangpo Gorge, Tibet, one of the hardest places in the world to reach, and conducted a gravity and hybrid GPS observation campaign in 2016. We computed the Bouguer gravity anomalies (BGAs) and free‐air gravity anomalies (FGAs) and increased the resolution of the FGAs by merging the in situ data with EIGEN‐6C4 gravity model data. The BGAs around the Tsangpo Gorge are in general negative and gradually decrease from south (−360 mGal) to north (−480 mGal). They indicate a uniformly dipping Moho around the Tsangpo Gorge that sinks from south to north at an angle of 12°. We introduced a method to compute the vertical tectonic stress of the lithosphere, a quantitative expression of isostasy, using BGA and terrain data, and applied it to the area around the Tsangpo Gorge. We found that the lithosphere of the upstream of the Tsangpo Gorge is roughly in an isostatic state, but the lithosphere of the downstream exhibits vertical tectonic stress of ~50 MPa, which indicates the loss of a large amount of surface material. This result does not support the deduction of the valley bottom before uplift of the Tsangpo Gorge by Wang et al. (2014).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.