Abstract

Determination of the isostatic anomaly and the isostatic additional force plays a key role in understanding the deep tectonic features and dynamics in the Qinling area. At present, high-accuracy observation gravity data are one of the important means to obtain the isostatic anomaly and the isostatic additional force. Firstly, we calculate the free-air gravity anomalies and the Bouguer gravity anomalies by using hybrid gravity and GPS observation data. Then, we invert the isostatic anomaly and the isostatic additional force. The results show that the isostatic depth calculated by Airy isostatic theory is 40–49 km, and the Moho depth is 39–48 km. The Weihe Basin is in a non-isostatic state with an upward isostatic additional force that reached about 20 MPa. The isostatic anomaly and the isostatic additional force are approximately zero in the northern Sichuan Basin, which indicates that the crust is in isostatic state. The negative isostatic anomaly and isostatic additional force in Liupanshan Mountains, the southwest margin of the Ordos Basin, and the local areas of the Qinling Orogen and Dabashan indicate the existence of crustal movement. By combining the measurement of InSAR, we obtain the surface deformation information of the Weihe Basin, as well as an upward trend, which proves that the result is highly consistent with the gravity observation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call