Abstract
In this paper, we address a theoretical investigation of the gravitational lensing phenomenon within the space-time framework of a holonomy-corrected spherically symmetric black hole (BH), incorporating both ordinary and phantom global monopoles. Our focus lies on the analysis of null geodesics within this BH background, examining the influence of ordinary and phantom global monopoles on the effective potential of null geodesics of the system. Afterwards, we derive analytical expressions for the deflection angle of photon light, considering weak field limit. The obtain expressions are presented up to the second order of the Loop Quantum Gravity parameter, enabling a thorough examination of the impact of ordinary and phantom global monopoles on the deflection angle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have