Abstract

Recently, interest has increased in the entanglement of remote quantum particles through the Newtonian gravitational interaction, both from a fundamental perspective and as a test case for the quantization of gravity. Likewise, post-Newtonian gravitational effects in composite nonrelativistic quantum systems have been discussed, where the internal energy contributes to the mass, promoting the mass to a Hilbert space operator. Employing a modified version of a previously considered thought experiment, it can be shown that both concepts, when combined, result in inconsistencies, reinforcing the arguments for the necessity of a rigorous derivation of the nonrelativistic limit of gravitating quantum matter from first principles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.