Abstract
A mathematical derivation of Maxwell's equations for gravitation, based on a mathematical proof of Faraday's Law, is presented. The theory provides a linear, relativistic Lagrangian field theory of gravity in a weak field, and paves the way to a better understanding of the structure of the energy-momentum tensor in the Einstein Field Equations. Hence it is directly relevant to problems in modern cosmology. The derivation, independent of the perturbation theory of Einstein's equations, puts the gravitational and electromagnetic fields on an equal footing for weak fields, contrary to generally held views. The historical objections to a linear Lorentz invariant field theory of gravity are refuted for weak fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.