Abstract
In this paper we settle a special case of the Grassmann convexity conjecture formulated earlier by B.and M.Shapiro. We present a conjectural formula for the maximal total number of real zeros of the consecutive Wronskians of an arbitrary fundamental solution to a disconjugate linear ordinary differential equation with real time. We show that this formula gives the lower bound for the required total number of real zeros for equations of an arbitrary order and, using our results on the Grassmann convexity, we prove that the aforementioned formula is correct for equations of orders $4$ and $5$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.