Abstract

The Grassmann convexity conjecture gives a conjectural formula for the maximal total number of real zeros of the consecutive Wronskians of an arbitrary fundamental solution to a disconjugate linear ordinary differential equation with real time. The conjecture can be reformulated in terms of convex curves in the nilpotent lower triangular group. The formula has already been shown to be a correct lower bound and to give a correct upper bound in several small dimensional cases. In this paper we obtain a general explicit upper bound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.