Abstract

Higher-order topological phases and real topological phases are two emerging topics in topological states of matter, which have been attracting considerable research interest. However, it remains a challenge to find realistic materials that can realize these exotic phases. Here, based on first-principles calculations and theoretical analysis, we identify graphyne, the representative of the graphyne-family carbon allotropes, as a two-dimensional (2D) second-order topological insulator and a real Chern insulator. We show that graphyne has a direct bulk band gap at the three $M$ points, forming three valleys. The bulk bands feature a double band inversion, which is characterized by the real Chern number enabled by the spacetime-inversion symmetry. The real Chern number is explicitly evaluated by both the Wilson loop method and the parity approach. We demonstrate that a nontrivial real Chern number for a 2D system dictates the existence of Dirac-type edge bands and the topological corner states. Furthermore, we find that the topological phase transition in graphyne from the real Chern insulator to a trivial insulator is mediated by a 2D Weyl semimetal phase. The robustness of the corner states against symmetry breaking and possible experimental detection methods are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.