Abstract

Introduction: As a quick and non-destructive testing method, Fourier transform infrared (FTIR) spectroscopy has become more popular for identifying food adulteration, manipulation, and deception. Sunflower oil is a widely used food item that may be contaminated or even adulterated with potentially harmful chemical substances associated with health issues. Methods: In this regard, this study was carried out to examine the applicability of near- and midinfrared spectroscopy to identify modifications in the pure sunflower oil and sunflower oil dispersed with graphite. The dispersion of graphite powder in sunflower oil was achieved using the ultrasonic technique. The samples were analyzed using FTIR spectroscopy and transmission electron microscopy. Results: Changes in the FTIR signal were observed, indicating changes in the hydrogen atoms distribution within the solution. The flattened peak at 3470 cm-1 was associated with the overtone of glyceride ester carbonyl absorption compared to pure SO. Additionally, the stretching vibration of carbonyl groups of triglyceride esters occurred as a significant absorption band at 1754 cm-1, and the FTIR absorption at 1447 cm-1 was absent. Transmission electron microscopy (TEM) analysis showed transparent layers of graphene sandwiched with sunflower oil with a distinct flake-like shape Conclusion: These findings support dispersed graphite in sunflower oil to check the food quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.