Abstract

High-pressure and high-temperature experiments using a resistively heated diamond anvil cell have the advantage of heating samples homogeneously with precise temperature control. Here, we present the design and performance of a graphite resistive heated diamond anvil cell (GRHDAC) setup for powder and single-crystal x-ray diffraction experiments developed at the Extreme Conditions Beamline (P02.2) at PETRA III, Hamburg, Germany. In the GRHDAC, temperatures up to 2000K can be generated at high pressures by placing it in a water-cooled vacuum chamber. Temperature estimates from thermocouple measurements are within +/-35K at the sample position up to 800K and within +90K between 800 and 1400K when using a standard seat combination of cBN and WC. Isothermal compression at high temperatures can be achieved by employing a remote membrane control system. The advantage of the GRHDAC is demonstrated through the study of geophysical processes in the Earth's crust and upper mantle region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.