Abstract

Rational reuse of municipal sludge to produce electro-Fenton electrode can not only save resources, but also produce superior peroxide and degradation pollutants simultaneously. Herein, a novel electro-Fenton electrode derived from sludge biochar loaded on Ni foam (SBC@Ni) was constructed via high temperature pyrolysis and chemical coating for efficient H2O2 evolution and pollutant degradation. Systematic experiments and density functional theory calculations (DFT calculation) explained that the production of graphite C and graphite N during high-temperature pyrolysis of municipal sludge can greatly enhance the oxygen reduction reaction of SBC@Ni electrode and promote the evolution of H2O2. And the hybrid heterojunctions, such as FeP, also played a key role in electrocatalytic processes. Notably, the electrode still exhibited excellent performance after 1000 linear scans and 12 hours of continuous current stimulation, which demonstrated the excellent stability of the electrode. Moreover, SBC@Ni electrode can not only effectively oxidize 4-chlorophenol through the electro-Fenton effect, but also fully mineralize organic matter, indicating promising environmental application. The free radical quenching experiment also revealed that the ·OH is the main active species for 4-CP degradation in SBC@Ni electro-Fenton system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call