Abstract

ReRAM-based Processing-in-Memory (PIM) offers a promising paradigm for computing near data, making it an attractive platform of choice for graph applications that suffer from sparsity and irregular memory access. However, the performance of ReRAM-based graph accelerators is limited by two key challenges - significant storage requirements (particularly due to wasted zero cell storage of a graph's adjacency matrix), and significant amount of on-chip traffic between ReRAM-based processing elements. In this paper we present, GraphIte, an approximate computing-based framework for accelerating iterative graph applications on ReRAM-based architectures. GraphIte uses sparsification and approximate updates to achieve significant reductions in ReRAM storage and data movement. Our experiments on PageRank and community detection show that our proposed architecture outperforms a state-of-the-art ReRAM-based graph accelerator by up to 83.4 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">%</sup> reduction in execution time while consuming up to 87.9 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">%</sup> less energy for a range of graph inputs and workloads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.