Abstract

We show that equitable partitions, which are generalizations of graph symmetries, and Fourier transforms are fundamentally related. For a partition of a graph's vertices we define a Fourier similarity transform of the graph's adjacency matrix built from the matrices used to carryout discrete Fourier transformations. We show that the matrix (graph) decomposes into a number of smaller matrices (graphs) under this transformation if and only if the partition is an equitable partition. To extend this result to directed graphs we define two new types of equitable partitions, equitable receiving and equitable transmitting partitions, and show that if a partition of a directed graph is both, then the graph's adjacency matrix will similarly decomposes under this transformation. Since the transformation we use is a similarity transform the collective eigenvalues of the resulting matrices (graphs) are the same as the eigenvalues of the original untransformed matrix (graph).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.