Abstract

It is very well known that the use of a load-holding valve (LHV) in a hydraulic system introduces additional energy consumption. This article presented a simplified graphical method for analyzing the power requirements of hydraulic systems equipped with load-holding valves for overrunning load control. The method helps to understand the performance of load-holding valves during actuator movement. In addition, it allows visualization of the influence on the overall system consumption of the main parameters (pilot ratio, set pressure) and others such as flow rate, back pressure, and load force. The method is attractive because, with only the pressures at the three ports and the valve relief function curve, it is sufficient to evaluate the energy consumption and to define the power ratio as an index indicating the percentage of energy that is to be used to open the LHV valve. The method was applied to real cases, in particular to two types of lifting mobile machines. It was validated following several outdoor tests on two mobile machines where experimental data were obtained. During tests, both machines were equipped with a set of seven different performance LHV valves. The described method could be beneficial for hydraulic machine manufacturers engaged in designing lifting devices when selecting a suitable valve for energy efficiency applications, especially now that the trend towards electrification is a reality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call