Abstract

Iron-titanium bimetallic oxide, Fe2TiO5 (FTO), is anticipated to exhibit superior electrochemical properties due to its high theoretical capacity. However, the practical large-scale utilization of FTO is severely hindered by its substantial capacity fading and subpar cycling performance. In this work, we propose a strategy to improve the electrochemical properties of FTO by carbon coating. To implement this strategy, we synthesize FTO nanoparticles (FTO NPs) coated with reduced graphene oxide (rGO) by a solvothermal method. When used as anode materials in lithium-ion batteries, FTO/rGO composite demonstrates a higher specific capacity (498.2 mAh g−1 after 100 cycles) than pristine FTO NPs, which is ascribed to the addition of rGO. The rGO with excellent conductivity facilitates efficient electron and ion transportation, and the composite structure of FTO NPs wrapped with rGO provides buffer space to alleviate the volume expansion during the charge/discharge process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call