Abstract

We report the use of triethylenetetramine (TETA) as a dopant of graphene transparent conducting electrodes (TCEs) for Si heterojunction solar cells. The molar concentration (nD) of TETA is varied from 0.05 to 0.3 mM to optimize the graphene TCEs. The TETA-doped graphene/Si Schottky solar cells show a maximum power-conversion efficiency (PCE) of 4.32% at nD = 0.2 mM, resulting from the enhanced electrical and optical properties, as proved from the nD-dependent behaviors of sheet resistance, transmittance, reflectance, series resistance, and external quantum efficiency. In addition, polymethylmethacrylate is employed as an antireflection layer to enhance the light-trapping effect on graphene/Si solar cells, resulting in further enhancement of the maximum PCE from 4.32 to 5.48%. The loss of the PCE is only within 2% of its original value during 10 days in air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.